Invest in a good text editor

Scientists should invest time in a good text editor: pay the upfront cost of learning to use and customising a single editor for all of your text needs. This may be obvious to programmers, but less so to scientists who may have yet to recognise the benefits of a good editor.

Much scientific analysis and documentation can be achieved with plain text files (e.g., .py, .m, .f, .r, .tex, or .md). The default method to work with multiple file types is to use multiple IDEs (Integrated Development Environments): Matlab for m-files, Spyder or IPython notebooks for python scripts, TexStudio or TeXnicCenter for latex files, RStudio for R, or one of the countless editors for Markdown currently available.

Using a single editor has many benefits over using a range of editors within each IDE:

Continue reading “Invest in a good text editor”


Vector and raster in one with Matplotlib

Vector images are great, except when they shouldn’t be vector. Figures with intricate detail can actually benefit from being rasterized. This can reduce file size and help the figure load more quickly. Python’s Matplotlib has an option to rasterize certain elements, but it doesn’t always work as simply as expected.

This post describes a function that (i) lets you rasterize any chosen elements when you export the figure and (ii) overcomes problems with the current implementation of rasterizing objects with Matplotlib.

Continue reading “Vector and raster in one with Matplotlib”

Matplotlib animations the easy way

Creating animations with Python’s Matplotlib is quick and easy once you know how to do it. However, when learning I found the tutorials and examples online either daunting, overly sophisticated, or lacking explanation. In many cases all I need is a quick-and-dirty script that works, rather than longer code that adheres to best practices.

Continue reading “Matplotlib animations the easy way”